Safety Assessment for Aerodromes

1. PURPOSE

This Advisory Circular (AC) and the attached appendices provide guidance to aerodrome operators in undertaking a safety assessment as part of the aerodromes Safety Management System (SMS). By applying the methodology and procedures described here, the aerodrome operator can demonstrate compliance with the following minimum requirements to implement a SMS acceptable to Department of Civil Aviation (DCA).

a) identifies safety hazards;

b) ensures that remedial action necessary to maintain safety is implemented;

c) provides for continuous monitoring and regular assessment of the achieved safety; and

d) aims to make continuous improvement to the overall safety of the aerodrome.

Not all the items addressed in this document will be applicable at every Aerodrome. This AC contains recommended operating procedures, a Safety Assessment Flow Chart (Appendix A), and Safety Assessment Methodologies for Aerodromes (Appendix B).

2. REFERENCES

2.1. MCAR - SM, Safety Management

2.2. DCA-GM-AGA 05 (Safety Management System for Aerodrome Operators)

2.3. ICAO Annex 19 - Safety Management

2.4. ICAO Doc 9859 - Safety Management System

2.5. ICAO Doc 9981 - Procedures for Air Navigation Services Aerodromes

3. APPLICABILITY

This AC presents a general methodology to conduct safety assessments on an aerodrome, additional tools and particularly appropriate checklists for identifying hazard, assessing safety risks and eliminating or mitigating those risks when necessary. The suitability of the mitigation proposed and the need for alternative measures,
operational procedures or operating restrictions for the specific operations concerned should be comprehensively evaluated. The safety assessment process addresses the impact of a safety concern, including a change or deviation, on the safety of operations at the aerodrome and takes into consideration the aerodromes capacity and the efficiency of operations, as necessary.

The aerodrome operator is responsible for compliance with the Myanmar Aircraft Rules and Myanmar Civil Aviation Requirements, Part 139 - Section 1 and Section 2. Adherence to the provisions contained in this AC may materially assist the aerodrome operator in complying with these requirements.

4. BASIC CONSIDERATIONS

4.1. A safety assessment is an element of the risk management process of an SMS that is used to assess safety concerns arising from, inter alia, deviations from standards and applicable regulations, identified changes at an aerodrome, or when any other safety concerns arise.

Note. — Changes on an aerodrome can include changes to procedures, equipment, infrastructures, safety works, special operations, regulations, organization, etc.

4.2. When a safety concern, change or a deviation has an impact on several aerodrome stakeholders, consideration shall be given to the involvement of all stakeholders affected in the safety assessment process. In some cases, the stakeholders impacted by the change will need to conduct a separate safety assessment themselves in order to fulfill the requirements of their SMSs and coordinate with other relevant stakeholders. When a change has an impact on multiple stakeholders, a collaborative safety assessment should be conducted to ensure compatibility of the final solutions.

4.3. A safety assessment considers the impact of the safety concern on all relevant factors determined to be safety-significant. The list below provides a number of items that may need to be considered when conducting a safety assessment. The items in this list are not exhaustive and in no particular order:

a) aerodrome layout, including runway configurations; runway length; taxiway, taxilane and apron configurations; gates; jet bridges; visual aids; and the RFF services infrastructure and capabilities;
b) types of aircraft, and their dimensions and performance characteristics, intended to operate at the aerodrome;
c) traffic density and distribution;
d) aerodrome ground services;
e) air-ground communications and time parameters for voice and data link communications;
f) type and capabilities of surveillance systems and the availability of systems providing controller support and alert functions;
g) flight instrument procedures and related aerodrome equipment;

h) complex operational procedures, such as collaborative decision-making (CDM);

i) aerodrome technical installations, such as advanced surface movement guidance and control systems (A-SMGCS) or other air navigation aids;

j) obstacles or hazardous activities at or in the vicinity of the aerodrome;

k) planned construction or maintenance works at or in the vicinity of the aerodrome;

l) any local or regional hazardous meteorological conditions (such as wind shear); and

m) airspace complexity, ATS route structure and classification of the airspace, which may change the pattern of operations or the capacity of the same airspace.

Note.—Doc. 9981, Chapter 4 outlines the methodology and procedures to assess the adequacy between aeroplane operations and aerodrome infrastructure and operations.

4.4. Subsequent to the completion of the safety assessment, the aerodrome operator is responsible for implementing and periodically monitoring the effectiveness of the identified mitigation measures.

4.5. The aerodrome inspector reviews the safety assessment provided by the aerodrome operator and its identified mitigation measures, operational procedures and operating restrictions, as required in Article 5, and is responsible for the subsequent regulatory oversight of their application.

5. SAFETY ASSESSMENT PROCESS

5.1. Introduction

5.1.1. The primary objective of a safety assessment is to assess the impact of a safety concern such as a design change or deviation in operational procedures at an existing aerodrome.

5.1.2. Such a safety concern can often impact multiple stakeholders; therefore, safety assessments often need to be carried out in a cross-organizational manner, involving experts from all the involved stakeholders. Prior to the assessment, a preliminary identification of the required tasks and the organizations to be involved in the process is conducted.

5.1.3. A safety assessment is initially composed of four basic steps:

a) definition of a safety concern and identification of the regulatory compliance;

b) hazard identification and analysis;

c) risk assessment and development of mitigation measures; and
d) development of an implementation plan for the mitigation measures and conclusion of the assessment.

Note 1.— A safety assessment process flow chart applicable for aerodrome operations is provided in Appendix A to this AC.

Note 2.— Certain safety assessments may involve other stakeholders such as ground handlers, aeroplane operators, air navigation service providers (ANSPs), flight procedure designers and providers of radio navigation signals, including signals from satellites.

5.2. Definition of a safety concern and identification of the regulatory compliance

5.2.1. Any perceived safety concerns are to be described in detail, including timescales, projected phases, location, stakeholders involved or affected as well as their potential influence on specific processes, procedures, systems and operations.

5.2.2. The perceived safety concern is first analysed to determine whether it is retained or rejected. If rejected, the justification for rejecting the safety concern is to be provided and documented.

5.2.3. An initial evaluation of compliance with the appropriate provisions in the regulations applicable to the aerodrome is conducted and documented.

5.2.4. The corresponding areas of concern are identified before proceeding with the remaining steps of the safety assessment, with all relevant stakeholders.

5.2.5. If a safety assessment was conducted previously for similar cases in the same context at an aerodrome where similar characteristics and procedures exist, the aerodrome operator may use some elements from that assessment as a basis for the assessment to be conducted. Nevertheless, as each assessment is specific to a particular safety concern at a given aerodrome the suitability for reusing specific elements of an existing assessment is to be carefully evaluated.

5.3. Hazard identification

5.3.1. Hazards related to infrastructure, systems or operational procedures are initially identified using methods such as brain-storming sessions, expert opinions, industry knowledge, experience and operational judgment. The identification of hazards is conducted by considering:

a) accident causal factors and critical events based on a simple causal analysis of available accident and incident databases;

b) events that may have occurred in similar circumstances or that are subsequent to the resolution of a similar safety concern; and

c) potential new hazards that may emerge during or after implementation of the planned changes.
5.3.2. Following the previous steps, all potential outcomes or consequences for each identified hazard are identified.

5.3.3. The appropriate safety objective for each type of hazard should be defined and detailed. This can be done through:
 a) reference to recognized standards and/or codes of practices;
 b) reference to the safety performance of the existing system;
 c) reference to the acceptance of a similar system elsewhere; and
 d) application of explicit safety risk levels.

5.3.4. Safety objectives are specified in either quantitative terms (e.g. identification of a numerical probability) or qualitative terms (e.g. comparison with an existing situation). The selection of the safety objective is made according to the aerodrome operator’s policy with respect to safety improvement and is justified for the specific hazard.

5.4. Risk assessment and development of mitigation measures
5.4.1. The level of risk of each identified potential consequence is estimated by conducting a risk assessment. This risk assessment will determine the severity of a consequence (effect on the safety of the considered operations) and the probability of the consequence occurring and will be based on experience as well as on any available data (e.g. accident database, occurrence reports).

5.4.2. Understanding the risks is the basis for the development of mitigation measures, operational procedures and operating restrictions that might be needed to ensure safe aerodrome operations.

5.4.3. The method for risk evaluation is strongly dependent on the nature of the hazards. The risk itself is evaluated by combining the two values for severity of its consequences and probability of occurrence.

5.4.4. Once each hazard has been identified and analysed in terms of causes, and assessed for severity and probability of its occurrence, it must be ascertained that all associated risks are appropriately managed. An initial identification of existing mitigation measures must be conducted prior to the development of any additional measures.

5.4.5. All risk mitigation measures, whether currently being applied or still under development, are evaluated for the effectiveness of their risk management capabilities.

5.4.6. In some cases, a quantitative approach may be possible, and numerical safety objectives can be used. In other instances such as changes to the operational environment or procedures, a qualitative analysis may be more relevant.
5.4.7. In some cases, the result of the risk assessment may be that the safety objectives will be met without any additional specific mitigation measures.

5.5. Development of an implementation plan and conclusion of the assessment
5.5.1. The last phase of the safety assessment process is the development of a plan for the implementation of the identified mitigation measures.

5.5.2. The implementation plan includes time frames, responsibilities for mitigation measures as well as control measures that may be defined and implemented to monitor the effectiveness of the mitigation measures.

6. APPROVAL OR ACCEPTANCE OF A SAFETY ASSESSMENT

Note.— The safety assessment conducted by the aerodrome operator is a core SMS function. Management approval and implementation of the safety assessment, including future updates and maintenance, are the responsibility of the aerodrome operator.

6.1. The following type of safety assessments that are subject to approval or acceptance and determines the process used for that approval/acceptance.

6.1.1 Specific changes. Impact on the safety of aerodrome operations may result from:
 a) any change in aerodrome operations
 i) changes in the characteristics of infrastructures or the equipment;
 ii) changes in the characteristics of the facilities and systems located in the movement area;
 iii) changes in runway operations (e.g. type of approach, runway infrastructure, holding positions);
 iv) changes to the aerodrome networks (e.g. electrical and telecommunication);
 v) changes that affect conditions as specified in the aerodrome certificate;
 vi) long-term changes related to contracted third parties;
 vii) changes to the organizational structure of the aerodrome; and
 viii) changes to the operating procedures of the aerodrome.
 b) any change in aerodrome design and layout
 c) any change in environment (ecosystem)
 d) any deviation from standards
 e) any work on aerodrome (construction and/or maintenance)
 f) any exemption proposed by aerodrome operators

6.2. Where required in 6.1, a safety assessment subject to approval or acceptance by DCA shall be submitted by the aerodrome operator prior to implementation.
6.3. The aerodrome inspector analyses the safety assessment and verifies that:
 a) appropriate coordination has been performed between the concerned stakeholders;
 b) the risks have been properly identified and assessed, based on documented arguments (e.g. physical or Human Factors studies, analysis of previous accidents and incidents);
 c) the proposed mitigation measures adequately address the risk; and
 d) the time frames for planned implementation are acceptable.

6.4. On completion of the analysis of the safety assessment, the aerodrome inspector:
 a) either gives formal approval or acceptance of the safety assessment to the aerodrome operator as required in 6.1; or
 b) if some risks have been underestimated or have not been identified, coordinates with the aerodrome operator to reach an agreement on safety acceptance; or
 c) if no agreement can be reached, rejects the proposal for possible resubmission by the aerodrome operator; or
 d) may choose to impose conditional measures to ensure safety.

6.5. The aerodrome inspector should ensure that the mitigation or conditional measures are properly implemented and that they fulfill their purpose.

7. DISSEMINATION OF SAFETY INFORMATION

7.1. The aerodrome operator determines the most appropriate method for communicating safety information to the stakeholders and ensures that all safety-relevant conclusions of the safety assessment are adequately communicated.

7.2. In order to ensure adequate dissemination of information to interested parties, information that affects the current DCA Website or other relevant safety information is published in the relevant aerodrome information communications through appropriate means.

Director General

Department of Civil Aviation
Figure 1. Flow Chart to be used for conducting a Safety Assessment
SAFETY ASSESSMENT METHODOLOGIES
FOR AERODROMES

Note.—Further guidance on safety risk probability, severity, tolerability and assessment matrix can be found in Doc 9859—Safety Management Manual (SMM).

1. Depending on the nature of the risk, three methodologies can be used to evaluate whether it is being appropriately managed:

 a) Method type “A”. For certain hazards, the risk assessment strongly depends on specific aeroplane and/or system performance. The risk level is dependent upon aeroplane/system performance (e.g. more accurate navigation capabilities), handling qualities and infrastructure characteristics. Risk assessment, then, can be based on aeroplane/system design and validation, certification, simulation results and accident/incident analysis;

 b) Method type “B”. For other hazards, risk assessment is not really linked with specific aeroplane and/or system performance but can be derived from existing performance measurements. Risk assessment, then, can be based on statistics (e.g. deviations) from existing operations or on accident analysis; development of generic quantitative risk models can be well adapted;

 c) Method type “C”. In this case, a “risk assessment study” is not needed. A simple logical argument may be sufficient to specify the infrastructure, system or procedure requirements, without waiting for additional material, e.g. certification results for newly announced aeroplanes or using statistics from existing aeroplane operations.

Risk assessment method

2. The risk assessment takes into account the probability of occurrence of a hazard and the severity of its consequences; the risk is evaluated by combining the two values for severity and probability of occurrence.

3. Each identified hazard must be classified by probability of occurrence and severity of impact. This process of risk classification will allow the aerodrome to determine the level of risk posed by a particular hazard. The classification of probability and severity refers to potential events.

4. The severity classification includes five classes ranging from “catastrophic” (class A) to “not significant” (class E). The examples in Table-1, adapted from Doc 9859 with aerodrome-specific examples, serve as a guide to better understand the definition.

5. The classification of the severity of an event should be based on a “credible case” but not on a “worst case” scenario. A credible case is expected to be possible under reasonable conditions (probable course of events). A worst case may be expected...
under extreme conditions and combinations of additional and improbable hazards. If worst cases are to be introduced implicitly, it is necessary to estimate appropriate low frequencies.

Table-1. Severity classification scheme with examples
(adapted from Doc 9859 with aerodrome-specific examples)

<table>
<thead>
<tr>
<th>Severity</th>
<th>Meaning</th>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
</table>
| Catastrophic | - Equipment destroyed | A | - collision between aircraft and/or other object during take-off or landing
 - Multiple deaths |
| Hazard | - A large reduction in safety margins, physical distress or a workload such that the operators cannot be relied upon to perform their tasks accurately or completely | B | - runway incursion, significant potential for an accident, extreme action to avoid collision
 - Serious injury
 - Major equipment damage |
| Major | - A significant reduction in safety margins, a reduction in the ability of the operators to cope with adverse operating conditions as a result of an increase in workload or as a result of conditions impairing their efficiency | C | - runway incursion, ample time and distance (no potential for a collision)
 - collision with obstacle on apron/parking position (hard collision)
 - person falling down from height
 - missed approach with ground contact of the wing ends during the touchdown
 - large fuel puddle near the aircraft while passengers are on-board |
 - Serious incident
 - Injury to persons |
<table>
<thead>
<tr>
<th>Severity</th>
<th>Meaning</th>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>- Nuisance</td>
<td>D</td>
<td>- hard braking during landing or taxiing</td>
</tr>
<tr>
<td></td>
<td>- Operating limitations</td>
<td></td>
<td>- damage due to jet blast (objects)</td>
</tr>
<tr>
<td></td>
<td>- Use of emergency procedures</td>
<td></td>
<td>- expendables are laying around the stands</td>
</tr>
<tr>
<td></td>
<td>- Minor incident</td>
<td></td>
<td>- collision between maintenance vehicles on service road</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- breakage of drawbar during pushback (damage to the aircraft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- slight excess of maximum take-off weight without safety consequences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- aircraft rolling into passenger bridge with no damage to the aircraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>need immediate repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- forklift that is tilting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- complex taxiing instructions/procedures</td>
</tr>
<tr>
<td>Negligible</td>
<td>- Few consequences</td>
<td>E</td>
<td>- slight increase in braking distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- temporary fencing collapsing because of strong winds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- cart losing baggage</td>
</tr>
</tbody>
</table>
6. The probability classification includes five classes ranging from “extremely improbable” (class 1) to “frequent” (class 5) as shown in Table-2.

7. The probability classes presented in Table-2 are defined with quantitative limits. It is not the intention to assess frequencies quantitatively; the numerical value serves only to clarify the qualitative description and support a consistent expert judgment.

Table-2. Probability classification scheme

<table>
<thead>
<tr>
<th>Probability class</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Frequent</td>
<td>Likely to occur many times (has occurred frequently)</td>
</tr>
<tr>
<td>4 Reasonably probable</td>
<td>Likely to occur sometimes (has occurred infrequently)</td>
</tr>
<tr>
<td>3 Remote</td>
<td>Unlikely to occur (has occurred rarely)</td>
</tr>
<tr>
<td>2 Extremely remote</td>
<td>Very unlikely to occur (not known to have occurred)</td>
</tr>
<tr>
<td>1 Extremely improbable</td>
<td>Almost inconceivable that the event will occur</td>
</tr>
</tbody>
</table>

8. The classification refers to the probability of events per a period of time. This is reasoned through the following:

 a) many hazards at aerodromes are not directly related to aircraft movements; and
 b) the assessment of hazards occurrence probabilities can be based on expert judgment without any calculations.

9. The aim of the matrix is to provide a means of obtaining a safety risk index. The index can be used to determine tolerability of the risk and to enable the prioritization of relevant actions in order to decide about risk acceptance.

10. Given that the prioritization is dependent on both probability and severity of the events, the prioritization criteria will be two-dimensional. Three main classes of hazard mitigation priority are defined in Table-3:

 a) hazards with high priority — intolerable;
 b) hazards with mean priority — tolerable; and
 c) hazards with low priority — acceptable.

11. The risk assessment matrix has no fixed limits for tolerability but points to a floating assessment where risks are given risk priority for their risk contribution to aircraft operations. For this reason, the priority classes are intentionally not edged along the probability and severity classes in order to take into account the imprecise assessment.
Table 3. Risk assessment matrix with prioritization classes

<table>
<thead>
<tr>
<th>Risk probability</th>
<th>Catastrophic</th>
<th>Hazardous</th>
<th>Major</th>
<th>Minor</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent</td>
<td>5</td>
<td>5A</td>
<td>5B</td>
<td>5C</td>
<td>5D</td>
</tr>
<tr>
<td>Occasional</td>
<td>4</td>
<td>4A</td>
<td>4B</td>
<td>4C</td>
<td>4D</td>
</tr>
<tr>
<td>Remote</td>
<td>3</td>
<td>3A</td>
<td>3B</td>
<td>3C</td>
<td>3D</td>
</tr>
<tr>
<td>Improbable</td>
<td>2</td>
<td>2A</td>
<td>2B</td>
<td>2C</td>
<td>2D</td>
</tr>
<tr>
<td>Extremely</td>
<td>1</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
</tr>
</tbody>
</table>

---END---